Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.
نویسندگان
چکیده
The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtained. Here we have used the atomic force microscope to directly observe changes in the atomic lattice on a calcite seed crystal after the introduction of abalone shell proteins. The observed changes are consistent with a transition to (001) aragonite growth on a (1014) calcite surface.
منابع مشابه
Unusual micrometric calcite-aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda).
Species of Haliotis (abalone) show high variety in structure and mineralogy of the shell. One of the European species (Haliotis tuberculata) in particular has an unusual shell structure in which calcite and aragonite coexist at a microscale with small patches of aragonite embedded in larger calcitic zones. A detailed examination of the boundary between calcite and aragonite using analytical mic...
متن کاملSynchrotron x-ray microbeam diffraction from abalone shell
Microstructured biomaterials such as mollusk shells receive much attention at present, due to the promise that advanced materials can be designed and synthesized with biomimetic techniques that take advantage of self-assembly and aqueous, ambient processing conditions. A satisfactory understanding of this process requires characterization of the microstructure not only in the mature biomaterial...
متن کاملCaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology.
Acidic proteins from many biogenic minerals are implicated in directing the formation of crystal polymorphs and morphologies. We characterize the first extremely acidic proteins purified from biomineralized aragonite. These abalone nacre proteins are two variants of 8.7 and 7.8 kDa designated AP8 (for aragonite proteins of approximately 8 kDa). The AP8 proteins have compositions dominated by As...
متن کاملThe Influence of a Protein Fragment Extracted from Abalone Shell Green Layer on the Precipitation of Calcium Carbonate Polymorphs in Aqueous Media
Many living organisms form mineral phases through biologically controlled processes, known as biomineralization. Thus created materials are composites of both, mineral and organic components. The shell of the gastropod mollusc red abalone (Haliotis rufescens) consists of calcite and aragonite layers, each of them containing characteristic biopolymers responsible for biomineralization. In this w...
متن کاملMineralogical Variation in Shells of the Blackfoot Abalone, Haliotis iris (Mollusca: Gastropoda: Haliotidae), in Southern New Zealand
The New Zealand blackfoot abalone, Haliotis iris Gmelin, is among the few gastropods that precipitate both calcite and aragonite in their shells. The location, composition, and thickness of these mineral layers may affect color, luster, and strength of the shell, which is locally important in jewelry manufacture. Skeletal mineralogy and shell structure of H. iris from three southern New Zealand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2000